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Abstract

A general three-dimensional aeroelastic solver is developed based on coupled finite element and boundary element

methods and applied to investigate the flutter boundaries in supersonic flows. The boundary element method is applied

to three-dimensional unsteady supersonic potential flow as the aerodynamic model and coupled with the finite element

method for structural modelling, in order to construct the system of aeroelastic equations. The aeroelastic equations are

solved for the flutter prediction using the frequency domain approach. Flutter boundaries for two types of wing

planforms at supersonic speeds are determined and compared with the existing experimental results and previous

numerical investigations which show good agreement.

r 2004 Published by Elsevier Ltd.

1. Introduction

Aeroelasticity is concerned with phenomena involving the interaction among inertial, elastic, and aerodynamic

forces. One of the famous problems in aeroelasticity is supersonic flutter which is of prime interest to designers of high

speed flight vehicles. Using an unsteady Euler or Navier–Stokes computational fluid dynamics (CFD) algorithm

coupled with a structural dynamics solver, the complete aeroelastic response can be predicted [Farhat and Lesoinne

(1996)]. However, the major limitation of applying such a CFD model is the computational time and memory required

to run a full aeroelastic simulation of even a simple three-dimensional geometry. Consequently, aeroelasticians prefer to

use simpler aerodynamic models such as piston theory (Ashley and Zartarian 1956), the modified Karman-Moore

method (Soltani et al. 2000), and harmonic gradient methods (Liu et al., 1991) for supersonic flutter analysis. Hence, if

an accurate and efficient replacement for the CFD solver could be developed, aeroelastic response predictions would be

much more efficient computationally.

Jones and Appa (1977) used the potential gradient method to analyze unsteady supersonic flows over wings with

control surfaces. Chen and Liu (1983) applied the harmonic gradient method for unsteady supersonic flow calculations

and Liu et al. (1991) developed the ZONA 51C code based on the acceleration potential formulation of the harmonic

gradient method, in order to facilitate the computation scheme of wing-body combinations. Liu et al. (1997) developed

a lifting surface method that generalizes linear theory to include the effects of nonlinear thickness and upstream

influence in a unified supersonic–hypersonic flow regime.
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The purpose of the present work is to develop a suitable aerodynamic model which is capable of estimating the

unsteady pressure distribution around a three-dimensional structure at supersonic speeds accurately and efficiently with

the ability of coupling with the structural model to produce a practical aeroelastic solver. For such a technique to be of

practical use, it must be applicable to any arbitrary three-dimensional structure and be easy to implement.

The boundary element method (BEM) is known as a powerful numerical technique in engineering analysis which is

capable of coupling easily with the finite element method (FEM). Initially, this method was used in linear problems, but

it developed quickly to analyze nonlinear problems too. One of the main advantages of BEM is reduction of the

problem dimensionality by one, since it will be required to discretize just the boundary of the computational domain.

In this context, the direct BEM with higher-order elements is applied to the three-dimensional linearized unsteady

supersonic potential flow. One of the problems for supersonic flow analysis using BEM is the question of the diaphragm

for subsonic leading edge configurations. It is reported by Morino et al. (1975) that for subsonic leading edge

configurations the same results are obtained with or without diaphragms. Another problem in potential flow analysis is

wake modelling. However, in supersonic flows over conventional configurations, trailing edges usually are supersonic

and the wake has no influence on the body; hence its effect is considered to be zero. Discussion is provided on how we

can remove hypersingularity on the line of Mach cone intersection with the element. Moreover, the numerical treatment

for computing hypersingular boundary integrals is also studied in detail. The results are compared with existing

numerical results and exact solutions. Coupling of BEM and FEM is made using surface spline interpolation resulting

in a system of aeroelastic equations.

2. Structural model

The finite element method is used for structural modelling. Linear behavior for the structure is a reasonable

assumption for the determination of the flutter boundaries. Therefore, the governing equation of structural dynamics

can be written as

M .Uþ C ’Uþ KU ¼ F; ð1Þ

where U; M; C; K; and F are the vector of structural deflection, mass matrix, damping matrix, stiffness matrix, and
nodal forces vector, respectively.

3. Aerodynamic model

The isentropic inviscid flow of a perfect gas can be described by the total velocity potential, FT : Furthermore, it is
convenient to introduce the perturbation potential f such that

FT ¼ Ux þ f; ð2Þ

where U is the freestream velocity. Now, consider the linearized unsteady potential flow that is governed by the

following partial differential equation:

r2f�
1

a2
N

@

@t
þ U

@

@x

� �2
f ¼ 0; ð3Þ

where aN is the freestream speed of sound. The equivalent boundary integral relation for the above partial differential

equation in supersonic flows without wake effect is [Morino (1985)]
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where the asterisk denotes a collocation point, and X ; Y ; Z; T ; and F are the Prandtl–Glauert variables, i.e.

X ¼
x

bc
; Y ¼

y

c
; Z ¼

z
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also,

R0 ¼
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q
8><
>:

and S is the transformed boundary in XYZ space, N is the unit normal to S; Eð~XX �Þ ¼ 1
2
on a smooth surface, and M is

freestream Mach number.

Since Eq. (4) is linear, the steady and unsteady problems can be studied by setting

f ¼ fs þ fu ð5Þ

and separating the two problems, solving them independently and finally, superimposing the results. In aeroelastic

analysis the unsteady part is required. Assuming each time-dependent function as

f ¼ f̃est ¼ f̃eST ð6Þ

and using Eq. (4) for the unsteady problem, one can obtain

4pEð~XX �Þ *Fð~XX �Þ ¼ �
I
S

*C0 H½e�ðSYþÞ þ e�ðSY�Þ	
R0 dSþ

I
S
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@
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R0

 !
dS: ð7Þ

The boundary integral Eq. (7) is the basic relation for numerical analysis. For this purpose, Eq. (7) is discretized in a

standard way in which the boundary integrals are approximated by a summation of integrals over individual boundary

elements, i.e.

4pEð~XX �Þ *Fð~XX �Þ ¼ �
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dSj : ð8Þ

With some mathematical manipulations, it can be shown that Eq. (8) can be expressed as follows:
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where

K1ðS;R0Þ ¼ ðeSR0
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ÞeSMDX ; ð10Þ
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� e�SR0

Þ	eSMDX : ð11Þ

If one assumes constant K1 and K2 over each element, Eq. (9) can be written as
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Using linear elements, two types of surface integrals are produced, i.e.

P1k ¼
Z
Sj

fk

H

R0 dSj ; k ¼ 1;y; 4; ð13Þ

P2k ¼
Z
Sj

fk

@

@N 0

H

R0

� �
dSj ; k ¼ 1;y; 4: ð14Þ

For elements that are intersected by the Mach fore-cone (see Fig. 1), the first integral is weakly singular and the latter is

hypersingular at the Mach cone intersection. In Eqs. (13) and (14), fk are the so-called interpolation functions for

bilinear surface elements.

As is shown in Fig. 1, some of the elements are completely inside, completely outside or partially inside the Mach

cone. It is obvious that the integrals P1k and P2k are zero when the element Sj is completely outside the Mach cone. On

the other hand, when Sj is completely inside the Mach cone and has no contact with the surface of the Mach cone, P1k

and P2k can be evaluated using the Gauss quadrature technique. However, when the element Sj is partially inside the

Mach cone, the weakly singular integrals P1k can be evaluated using the Gauss quadrature technique with Telles

transformation (Telles, 1987) while the integrals P2k have some complexity in their numerical evaluation. For
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computing the integrals P2k we encounter with four integrals as
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I3 ¼
Z
Sj

x2
@

@N 0

H

R0

� �
dSj ; I4 ¼

Z
Sj

x1x2
@

@N 0

H

R0

� �
dSj : ð16Þ

For evaluation of the integrals Ik; at first, the inside part of the element is mapped to a rectangular region with the
local coordinates Z1 and Z2: Therefore, we deal with the following integrals:
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where ~aa1 and ~aa2 are tangent vectors in Z1 and Z2 directions, respectively. Using the Hadamard finite part, one obtains
the following relation for the integral J1 [Morino (1974)]:

J1 ¼ IDðþ1;þ1Þ � IDðþ1;�1Þ � IDð�1;þ1Þ þ IDð�1;�1Þ; ð17Þ

where

IDðZ1; Z2Þ ¼ tan�1p

�~RR �~aa1}~RR �~aa2

R0ð~RR 
~aa1 �~aa2 Þ

 !
; �

p
2
ptan�1p ð Þp

p
2
;

and

~aa}~bb ¼ axbx � ayby � azbz

is the supersonic dot product.
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With some mathematical manipulation, one has

J1 ¼ A � B � C þ D;

J2 ¼ A � B þ C � D þ F � E;

J3 ¼ A þ B � C � D þ H � G;

J4 ¼ A þ B þ C þ D � E � F � G � H þ M;

J5 ¼ A � B þ C � D � E þ F � 2K � 2L þ 2O;

J6 ¼ A þ B � C � D � G þ H � 2I � 2J þ 2N;

J7 ¼ A � B � C þ D � 2I þ 2J;

J8 ¼ A � B � C þ D � 2K þ 2L;

where

A ¼ IDðþ1;þ1Þ; B ¼ IDðþ1;�1Þ;

C ¼ IDð�1;þ1Þ; D ¼ IDð�1;�1Þ;
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Z 1

�1
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Z 1

�1
IDðZ1;�1Þ dZ1;

G ¼
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�1
IDðþ1; Z2Þ dZ2; H ¼

Z 1

�1
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�1
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Z 1

�1
Z1IDðZ1;�1Þ dZ1;

K ¼
Z 1

�1
Z2IDðþ1; Z2Þ dZ2; L ¼

Z 1

�1
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M ¼
Z 1

�1

Z 1

�1
IDðZ1; Z2Þ dZ1 dZ2; N ¼

Z 1

�1

Z 1

�1
Z1IDðZ1; Z2Þ dZ1 dZ2;

O ¼
Z 1

�1

Z 1

�1
Z2IDðZ1; Z2Þ dZ1 dZ2:

Applying Eq. (8) at all of the collocation points, and evaluating surface integrals as explained before, one arrives at a set

of algebraic equations that can be written in matrix form as

A *U ¼ B *W0: ð18Þ

3.1. Error study

To validate the present mappings and analytical relations, an element with the following corners is considered:

Rð�1;�1Þ ¼

2

0

0

8><
>:

9>=
>;; Rð1;�1Þ ¼

2

1

0

8><
>:

9>=
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1
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8><
>:

9>=
>;; Rð�1; 1Þ ¼

2

0

1

8><
>:

9>=
>;:

The surface of element is divided into some regions such that all of the possible forms of intersection of the element by

the Mach cone can be generated. When the element is intersected as shown in Fig. 2(a) (Arrangement 1) or Fig. 2(b)

(Arrangement 2), the element is divided into regions I and II as shown at the top of Tables 1 and 2. Moreover, when the

element is intersected as shown in Fig. 2(c) (Arrangement 3), the element is divided into three regions I, II and III as

shown at the top of Table 3. Then the integrals I1–I4 are evaluated separately on each region in consideration, with the

corresponding mapping relations. In addition, the integrals I1–I4 are evaluated for the whole surface of the element and

the results are considered as exact solutions. Finally, the summation of the solutions on each region must be equal to the

corresponding exact solution with an acceptable error.

Results for arrangement 1 are presented in Table 1. Comparison of the results with the exact solutions shows

excellent agreement for evaluation of I1–I3 while a small relative error exists in evaluation of I4: Although this error is
very small and acceptable, it arises from more multiple numerical integrations in the corresponding relation and also the

higher sensitivity of I4 because of its smaller order value relative to the I1–I3: However, this error exists for one element
and when the effects of all of the elements inside the Mach cone are computed, the overall error will be very smaller.

Table 2 shows the results of evaluations of I1–I4 for Arrangement 2. The value of e which is shown in Fig. 2(b), is set
equal to the one percent of d which is shown in Fig. 2(b). However, with this approximation the values of I1–I4 are in

ARTICLE IN PRESS
N. Soltani et al. / Journal of Fluids and Structures 19 (2004) 801–813 805



excellent agreement with the exact solutions, although the relative error in evaluation of I4 is again greater than the

others. Also, the results for evaluation of I1–I4 are presented in Table 3 for Arrangement 3. Similarly, the maximum

error is occurred for evaluation of I4 and has the same order as for the other arrangements.

3.2. Aerodynamic loads

The right-hand side of structural operator is the aerodynamic load vector. The aerodynamic load vector is derived

from the pressure distribution at the aerodynamic grid points. When the perturbation potential is computed, the

pressure distribution can be evaluated using unsteady linearized Bernoulli’s theorem as

p ¼ �r
@fu

@t
þ U

@fu

@x

� �
: ð19Þ

The three-dimensional (3-D) linearized potential flow theory is used to predict the aerodynamic loading and is valid for

very thin sections. On the other hand, thickness effects has nonlinear behavior and could render a forward shift in the

aerodynamic center for the wings, thereby reducing the flutter speed [Liu et al. (1997)]. This effect will become
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increasingly important as the Mach number increases, and frequency decreases. The thickness effect can be taken into

consideration by using the nonlinear potential flow formulation. Although this effect is formally second order, by using

the perturbation methods the linear model can be modified approximately, to take the effect of thickness into account.
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Table 1

Present results for Arrangement 1

Parameter Region I Region II Region I+II Exact Error (%)

I1 1.9607e-1 1.4376e-1 3.3984e-1 3.3984e-1 0.00

I2 3.0673e-2 �5.8328e-2 �2.7655e-2 �2.7655e-2 0.00

I3 5.7799e-2 �8.5463e-2 �2.7664e-2 �2.7655e-2 0.03

I4 �4.3045e-3 8.0583e-3 3.7539e-3 3.8890e-3 3.47

Table 2

Present results for Arrangement 2

Parameter Region I Region II Region I+II Exact Error (%)

I1 1.4333e-1 1.9647e-1 3.3980e-1 3.3984e-1 0.01

I2 4.5032e-2 �7.2687e-2 �2.7655e-2 �2.7655e-2 0.00

I3 4.5224e-2 �7.2889e-2 �2.7665e-2 �2.7655e-2 0.04

I4 �4.0853e-3 7.8444e-3 3.7591e-3 3.8890e-3 3.34

Table 3

Present results for Arrangement 3

Parameter Region I Region II Region III Region I+II+III Exact Error (%)

I1 3.6163e-2 1.4660e-1 1.5706e-1 3.3982e-1 3.3984e-1 0.01

I2 �2.5969e-3 4.5409e-2 �7.0276e-2 �2.7463e-2 �2.7655e-2 0.69

I3 3.1638e-2 1.0970e-2 �7.0462e-2 �2.7855e-2 �2.7655e-2 0.72

I4 �2.2717e-3 �1.3857e-2 1.9879e-2 3.7508e-3 3.8890e-3 3.55

N. Soltani et al. / Journal of Fluids and Structures 19 (2004) 801–813 807



In this paper, this correction is derived by using the well known generalized expression for the pressure coefficients, i.e.,

Cp ¼
2

b
1þ

M4ðgþ 1Þ � 4b2

2b3
dzt

dx
þ?

� �
wa

U
: ð20Þ

(Van Dyke 1953), where g is the specific heats ratio and zt is the local thickness. Retaining the first-order term (linear

model), the linearized pressure coefficient will be

Cpl
¼
2

b
wa

U
: ð21Þ

Using Eqs. (20) and (21), the pressure coefficient in presence of higher-order thickness effects, may be written as

Cp ¼ 1þ
M4ðgþ 1Þ � 4b2

2b3
dzt

dx
þ?

� �
Cpl

: ð22Þ

In the present study, the above 2-D formulation is applied for 3-D problems, where Cpl
is computed using a 3-D

linearized unsteady potential solver. Therefore, the pressure distribution can be expressed as

p ¼ �r
@fu

@t
þ U

@fu

@x

� �
1þ

M4ðgþ 1Þ � 4b2

2b3
dzt

dx
þ?

� �
; ð23Þ

where the expression in the bracket is the thickness correction factor. For delta or swept wings, the thickness correction

factor is evaluated using the normal Mach number. By using the potential function distribution in each element, in

terms of the shape functions and nodal values, i.e.,

fu ¼ N/el ; ð24Þ

the pressure distribution is determined as

p ¼ �r N
@/el

@t
þ U

@N

@x
/el

� �
1þ

M4ðgþ 1Þ � 4b2

2b3
dzt

dx
þ?

� �
: ð25Þ

Finally, the pressure distribution can be transferred to the nodal normal force vector by the following well-known

relation:

Fn
ael

¼
Z

sel

NTp dsel ; ð26Þ

which leads to

Fn
ael

¼ �r Cel

@/el

@t
þ UDel/el

� �
: ð27Þ

When Eq. (27) is assembled for all the aerodynamic elements, one has

Fn
a ¼ �r C

@/

@t
þ UD/

� �
: ð28Þ

The above relation is used for evaluating aerodynamic loads on each aerodynamic grid point.

3.3. Interpolation

Since usually the aerodynamic and structural meshes do not coincide (see Fig. 3), one needs a suitable surface

interpolation. Using surface spline interpolation, one obtains an interpolation matrix, G; which relates the structural
grid point deflection components, Us; (including displacements and rotations) to the aerodynamic grid point

components, Ua; by the following relation (Harder and Desmarais 1972):

Ua ¼ GUs: ð29Þ

The next step is to find a transformation between the aerodynamic and structural force system. Equivalent virtual work

for the two systems of forces (including axial forces and moments) are applied and the result can be written as

Fs ¼ GTFa: ð30Þ

Eqs. (29)–(30) are used to interconnect the noncoincident aerodynamic and structural grid points for the aeroelastic

formulation.
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3.4. Downwash

Assuming harmonic motion and neglecting higher order terms the boundary conditions yield [Morino (1974)]

*C0 ¼ �NZ
b

M
SZ̃ þ

1

b
@Z̃

@X

� �
¼ �

*wa

U
: ð31Þ

The aerodynamic downwash can be written in terms of structural displacement according to Eq. (29) as

*C0 ¼ �
1

U
ðsC þ ULÞ *Us; ð32Þ

where C and L are submatrices of G:

4. Aeroelastic model

Aerodynamic and structural models along with interpolation matrices, aerodynamic loads, and downwashes can be

combined to give the aeroelastic model. Using Eqs. (1), (18), (28), and (32), with some manipulations, one arrives at the

system of nondimensional aeroelastic equations as

k2Mþ
l2

U2
KþQðkÞ

� �
*Us ¼ 0; ð33Þ

where QðkÞ is the aerodynamic stiffness matrix and the complex reduced frequency is defined as

k ¼
ls

U
: ð34Þ

This formulation is based on structural variables. For flutter analysis purposes, Eq. (33) must be solved for the

eigenvalue k: Eq. (33) has a different character depending on the unsteady or quasi-steady aerodynamic formulation.
Using unsteady aerodynamics leads to a nonlinear eigenvalue problem while for quasi-steady aerodynamics, it reduces

to a standard general matrix eigenvalue problem.
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Fig. 3. FEM and BEM mesh on 15� untapered swept wing.
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5. Numerical results

5.1. Aerodynamic results

The BEM formulation for the aerodynamic model is validated using existing exact solutions (conical flow) in steady

state cases (Pukkett and Stewart 1947). Fig. 4 shows wave drag due to the thickness for double-wedge delta wing with

45� sweep angle. The surface of the wing is discretized using 250 linear elements. The results show the excellent

agreement between the BEM and the exact solution. Results for oscillatory flow are presented in Fig. 5 for a rectangular

wing, oscillating in a bending mode

z ¼ 0:18043
2y

b

����
����þ 1:70255

2y

b

����
����
2

�1:13688
2y

b

����
����
3

þ0:25387
2y

b

����
����
4

; ð35Þ

with oc=UN ¼ 0:2 and M ¼ 1:3: Fig. 5 also shows the results obtained by Morino et al. (1975) and the theory presented
by Lessing et al. (1960). The number of elements for the BEM analysis is 10 in both the chordwise and spanwise
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Fig. 4. Thickness drag of a double-wedge delta wing with M ¼
ffiffiffi
2

p
:

Fig. 5. Absolute value jD *Cpj and phase angle z for rectangular wing oscillating in bending mode with k ¼ oc=UN ¼ 0:2:

N. Soltani et al. / Journal of Fluids and Structures 19 (2004) 801–813810



directions. The comparison shows good agreement, although for oscillatory flows the evaluation of the coefficients is

not as accurate as for steady flows.

5.2. Wing flutter results

Flutter experimental studies were made at NASA Langley Research Center by Tuovila and McCarty (1955). Two

types of wings which were cut from sheet metal are selected for performing flutter analysis using the present

formulation. The 15� untapered swept wing model of aspect AR ¼ 5:35 had the leading and trailing edge beveled 1
4
-in to

form a hexagonal section shape and 2-in chord measured perpendicular to the leading edge with 0.041-in thickness

(Fig. 6). The 45� delta wing model leading edge beveled 1
8
-in with 0.034-in thickness and 6-in chord at root.
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Fig. 6. Fifteen degrees untapered swept wing (all dimensions in inch).

Fig. 7. K method results for 45� delta wing at M ¼ 3:
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The results of computed flutter points of the wings at M ¼ 1:3 and 3 are presented in Tables 4 and 5, using the K

method (Rodden and Johnson 1994); see Fig. 7. The results in Table 4 show the destabilizing effect of the wing

thickness which is referred by other investigators.

The results show the flutter parameters obtained by the present method are in good agreement with other

investigators and the experiment. However, some discrepancies are seen between the results and the experimental

values. The differences are due to the structural modelling of the wings. Natural frequencies of the wings used in the

experiment could change slightly due to the different set-up in the experiment. It should be noted that in the present

study the structural model weight and second natural frequency are set to the experimental values. Actually, the

problem is very sensitive to the boundary conditions and to the structural parameters, which could be the source of

discrepancies between the numerical and experimental results.

6. Conclusions

The combination of BEM and FEM is used to develop an accurate, efficient and general aeroelastic tool for three-

dimensional supersonic flutter analysis. Direct BEM with higher-order elements is applied to three-dimensional

linearized unsteady supersonic potential flow and FEM to the structure. Coupling of BEM and FEM is made using

surface spline interpolation and the system of aeroelastic equations are solved in the frequency domain. Flutter

boundaries for two types of wing planforms at supersonic speeds are determined and compared with the available

experimental and numerical results. Good agreement is obtained, and the results show that the present method is a

practical tool for the study of aeroelastic problems and the prediction of aeroelastic instability.
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Table 4

Flutter boundaries for 45� delta magnesium wing

M ¼ 1:3 M ¼ 3

r ¼ 0:00066 slug=ft3 r ¼ 0:00072 slug=ft3

Vf (ft/s) f f (Hz) Vf (ft/s) f f (Hz)

Experiment (Tuovila and McCarty, 1955) 1280 150 2030 159

Present work 1163 159 2178 146

Piston theory (without thickness effect) 1427 155 — —

Piston theory (with thickness effect) 1179 166 — —

Table 5

Flutter boundaries for 15� swept wing

M ¼ 1:3 M ¼ 3

Aluminum wing Magnesium wing

r ¼ 0:00049 slug=ft3 r ¼ 0:00093 slug=ft3

Vf (ft/s) f f (Hz) Vf (ft/s) f f (Hz)

Experiment (Tuovila and McCarty, 1955) 1280 102 2030 146

Rodden et al. (1962) 1397 124 1913 149

Rodden (1991) 1547 127 2170 148

Liu et al. (1997) 1397 119 1805 147

Present work 1418 135 1863 145
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